
〔解答欄〕		Α		В		С		D		
		アセチレン		プロピレン (プロペン)		酸素		塩素		
		E 水素		F二酸化	炭素	G /	ウロロメタン	H 塩化水素		
(1)	HO Ca	J	K OH		L O	M		NH ₂ OH		
(2)			(3) 195/78= 2 存在する。	「理論上物質量比 $1:1$ で反応する。 \mathbf{J} : ベンゼンの分子量 78.0 ($\mathbf{C}_6\mathbf{H}_6$)はであり、 2.5 mol 存在する。また、 \mathbf{B} は $33.6/22.4$ = 1.5 mol であり、ベンゼンが過剰量 \mathbf{b} の $\mathbf{C}_6\mathbf{H}_6\mathbf{D}$ の分子量は \mathbf{B} の $\mathbf{L}_6\mathbf{D}$ の $\mathbf{L}_6\mathbf{D}$ が最大で生成する。						
(4)	メタンとの CI——CI CI	反応: CI CI III CI CI CI CI		ンとの反応 〜〜〜 	CI CI	(5)		」の大きなものほど陽イオ 「応性が高い。イオン化傾		
(6)	NH ₂ OH	H (7)	名前:さらし 色:赤紫色	(8)	理由:Мのフ:	ェノー		'ールのナトリウム塩) 炭酸より弱い酸であるた '。		

[解答欄]

[解答欄]

(解法) NaOH の添加時を基準とするため、最高温度は 35.6℃になる。

Q=比熱×質量× Δt より (1)

 $2226 = 4.2 \times a \times 10.6$ a = 50

50.0 cm³

NaOH の物質量は 2/40=0.05 mol

(2)つまり、水酸化ナトリウムの水への溶解熱は 44.5 kJ/mol である。 $2226 \div 0.05 = 44520$

そのため熱化学方程式は,

NaOH の物質量は 0.050 mol, HCl の物質量は 0.50×100/1000=0.050 mol (3)

NaOH と HCl の各 1 mol が反応したときの発熱量は、5026÷0.050=100520 そのため熱化学方程式は,NaOH(固)+HClaq=NaClaq+H2O+101 kJ・・・②

弱酸と弱塩基の電離が起こり、これらの電離は吸熱反応であるため、中和熱は小さくなる

(4)

(解法)

中和反応は②一①式より、HClag+NaOHag=NaClag+H₂O+56.5 kJ

よって中和反応のイオン反応式は、 $H^++OH^-=H_2O+56.5 kJ$ と表される。

NaOH の物質量は 0.100 mol、HCl の物質量は 0.050 mol のため、HCl のみがすべて中和反応する。

(5)そたのめ、発熱量 $Q=56.5\times0.050=2825$ J

混合後,水溶液の温度がt^Cになったとすると, $2825=4.2\times100\times(t-25)+4.2\times100\times(t-23)$

840t = 22985よって t=27.363

> 最高温度 27.4

[解答欄]

(5)

(計算過程)

C 1.40mol, H₂O 1.20mol より, 平衡時のそれぞれの物 質量は, C (1.40-x), H₂O (1.20-x), CO x, H₂ x

平衡時の混合気体の物質量(n)は 1.20 + x

気体の状態方程式: PV= nRT より,

 $1.01 \times 10^6 \times 21.0 = (1.20 + x) \times 8.31 \times 10^3 \times (1092 + 273)$

 $1.01 \times 10^6 \times 21.0$ $x = \frac{1.01 \times 10^{-5} \times 21.0}{8.31 \times 10^{3} \times 1365} - 1.20 = 0.6698$

 $H_2O: 0.530 \text{ mol}$ CO: 0.670 mol $H_2: 0.670 \text{ mol}$

(計算過程)

C 1.40mol, H₂O y mol のとき, 平衡時のそれぞれの物質量 は、CO, H₂O (y-1.40), CO 1.40, H₂ 1.40

平衡定数(K)は、温度が一定ならば濃度や圧が異なっても ほぼ一定の値となるため,

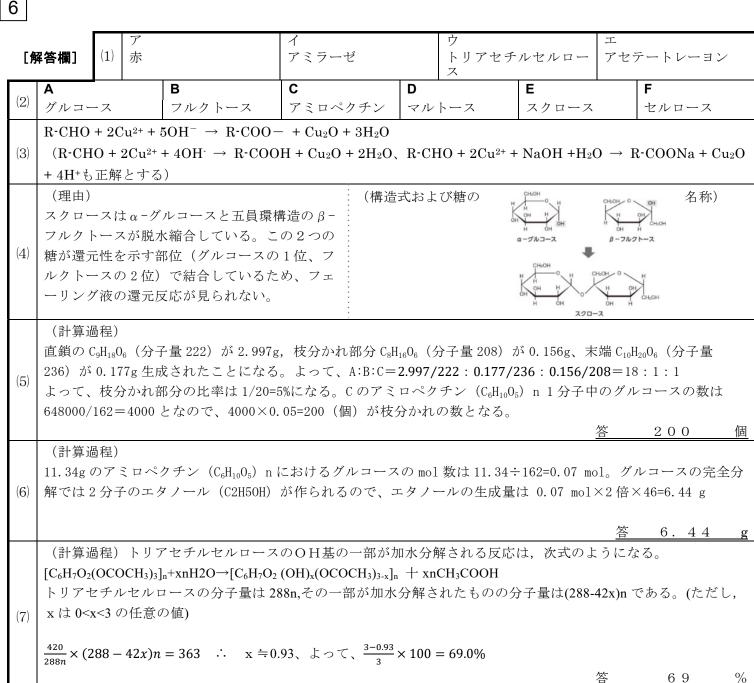
$$\frac{\binom{0.670}{21.0} \times \binom{0.670}{21.0}}{\binom{0.530}{21.0}} = \frac{\binom{1.40}{21.0} \times \binom{1.40}{21.0}}{\binom{y-1.40}{21.0}}$$

y = 3.714 mol

したがって、3.714×18.0=66.85

66.9

平衡:変化しない 理由:固体は量を変化させてもモル濃度には影響しないため、平衡には影響しない。


(4) 平衡:右に進む 理由:ルシャトリエの原理より,平衡は水蒸気の濃度を減少させる方向に進む。

温度上昇により平衡反応が右に進んだことから、本反応は吸熱反応であり温度を上げると温度を下げる方向に

(2)

平衡反応が進み平衡定数が増加したと考えられる。

[解答欄]		(1)	ァ 赤褐	ィ 淡黄	ゥ 塩	骏	ェ 黄緑(カー次亜		力 昇華	キデンプン	クフッ化水素
(2)												
(3)	水 未反応の 塩化水素を除く			濃硫酸 水を除去する。		(4)	用途 殺菌剤	漂白	钊	化学的性質 強い酸化力により、雑菌や汚れを分 解できる。		
(5)	硫酸によりデンプンが加水分解されることで、らせん構造がなくなり、ヨウ素デンプン反応による呈色が形成 されなくなったため。											
(6)	水素組	水素結合による分子間の結合力が大きいため。				(7)	ハロゲン フッ素	役害	割 酸化アルミニウムの融点を下げる。			

